Directed evolution study of temperature adaptation in a psychrophilic enzyme.
نویسندگان
چکیده
We have used laboratory evolution methods to enhance the thermostability and activity of the psychrophilic protease subtilisin S41, with the goal of investigating the mechanisms by which this enzyme can adapt to different selection pressures. A combined strategy of random mutagenesis, saturation mutagenesis and in vitro recombination (DNA shuffling) was used to generate mutant libraries, which were screened to identify enzymes that acquired greater thermostability without sacrificing low-temperature activity. The half-life of seven-amino acid substitution variant 3-2G7 at 60 degrees C is approximately 500 times that of wild-type and far surpasses those of homologous mesophilic subtilisins. The dependence of half-life on calcium concentration indicates that enhanced calcium binding is largely responsible for the increased stability. The temperature optimum of the activity of 3-2G7 is shifted upward by approximately 10 degrees C. Unlike natural thermophilic enzymes, however, the activity of 3-2G7 at low temperatures was not compromised. The catalytic efficiency, k(cat)/K(M), was enhanced approximately threefold over a wide temperature range (10 to 60 degrees C). The activation energy for catalysis, determined by the temperature dependence of k(cat)/K(M) in the range 15 to 35 degrees C, is nearly identical to wild-type and close to half that of its highly similar mesophilic homolog, subtilisin SSII, indicating that the evolved S41 enzyme retained its psychrophilic character in spite of its dramatically increased thermostability. These results demonstrate that it is possible to increase activity at low temperatures and stability at high temperatures simultaneously. The fact that enzymes displaying both properties are not found in nature most likely reflects the effects of evolution, rather than any intrinsic physical-chemical limitations on proteins.
منابع مشابه
Molecular Characterization of Cold Adaptation of Membrane Proteins in the Vibrionaceae Core-Genome
Cold-adaptation strategies have been studied in multiple psychrophilic organisms, especially for psychrophilic enzymes. Decreased enzyme activity caused by low temperatures as well as a higher viscosity of the aqueous environment require certain adaptations to the metabolic machinery of the cell. In addition to this, low temperature has deleterious effects on the lipid bilayer of bacterial memb...
متن کاملCold adaptation of a mesophilic subtilisin-like protease by laboratory evolution.
Enzymes isolated from organisms native to cold environments generally exhibit higher catalytic efficiency at low temperatures and greater thermosensitivity than their mesophilic counterparts. In an effort to understand the evolutionary process and the molecular basis of cold adaptation, we have used directed evolution to convert a mesophilic subtilisin-like protease from Bacillus sphaericus, SS...
متن کاملEurythermalism and the temperature dependence of enzyme activity.
The "Equilibrium Model" has provided new tools for describing and investigating enzyme thermal adaptation. It has been shown that the effect of temperature on enzyme activity is not only governed by deltaG(double dagger)(cat) and deltaG(double dagger)(inact) but also by two new intrinsic parameters, deltaH(eq) and T(eq), which describe the enthalpy and midpoint, respectively, of a reversible eq...
متن کاملOptimization to Low Temperature Activity in Psychrophilic Enzymes
Psychrophiles, i.e., organisms thriving permanently at near-zero temperatures, synthesize cold-active enzymes to sustain their cell cycle. These enzymes are already used in many biotechnological applications requiring high activity at mild temperatures or fast heat-inactivation rate. Most psychrophilic enzymes optimize a high activity at low temperature at the expense of substrate affinity, the...
متن کاملExtreme catalysts from low-temperature environments.
Cold-loving or psychrophilic organisms are widely distributed in nature as a large part of the earth's surface is at temperatures around 0 degrees C. To maintain metabolic rates and to prosper in cold environments, these extremophilic organisms have developed a vast array of adaptations. One main adaptive strategy developed in order to cope with the reduction of chemical reaction rates induced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular biology
دوره 297 4 شماره
صفحات -
تاریخ انتشار 2000